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Abstract

The analysis of crowdsourced annotations in
NLP is concerned with identifying 1) gold
standard labels, 2) annotator accuracies and
biases, and 3) item difficulties and error pat-
terns. Traditionally, majority voting was
used for 1), and coefficients of agreement
for 2) and 3). Lately, model-based analy-
sis of corpus annotations have proven better
at all three tasks. But there has been rel-
atively little work comparing them on the
same datasets. This paper aims to fill this
gap by analyzing six models of annotation,
covering different approaches to annotator
ability, item difficulty, and parameter pool-
ing (tying) across annotators and items. We
evaluate these models along four aspects:
comparison to gold labels, predictive accu-
racy for new annotations, annotator char-
acterization, and item difficulty, using four
datasets with varying degrees of noise in the
form of random (spammy) annotators. We
conclude with guidelines for model selec-
tion, application, and implementation.

1 Introduction

The standard methodology for analyzing crowd-
sourced data in NLP is based on majority vot-
ing (selecting the label chosen by the majority of
coders) and inter-annotator coefficients of agree-
ment, such as Cohen’s k (Artstein and Poesio,
2008). However, aggregation by majority vote im-
plicitly assumes equal expertise among the anno-
tators. This assumption, though, has been repeat-
edly shown to be false in annotation practice (Poe-
sio and Artstein, 2005; Passonneau and Carpen-
ter, 2014; Plank et al., 2014b). Chance-adjusted
coefficients of agreement also have many short-
comings: e.g., agreements in mistake, overly large
chance-agreement in datasets with skewed classes,
or no annotator bias correction (Feinstein and Ci-
cchetti, 1990; Passonneau and Carpenter, 2014).

1

Research suggests that models of annotation
can solve these problems of standard prac-
tices when applied to crowdsourcing (Dawid and
Skene, 1979; Smyth et al., 1995; Raykar et al.,
2010; Hovy et al., 2013; Passonneau and Carpen-
ter, 2014). Such probabilistic approaches allow
us to characterize the accuracy of the annotators
and correct for their bias, as well as accounting
for item-level effects. They have been shown to
perform better than non-probabilistic alternatives
based on heuristic analysis or adjudication (Quoc
Viet Hung et al., 2013). But even though a large
number of such models has been proposed (Car-
penter, 2008; Whitehill et al., 2009; Raykar et al.,
2010; Hovy et al., 2013; Simpson et al., 2013; Pas-
sonneau and Carpenter, 2014; Felt et al., 2015a;
Kamar et al., 2015; Moreno et al., 2015, inter
alia), it is not immediately obvious to potential
users how these models differ, or in fact, how they
should be applied at all. To our knowledge, the
literature comparing models of annotation is lim-
ited; focused exclusively on synthetic data (Quoc
Viet Hung et al., 2013) or using publicly avail-
able implementations which constrain the exper-
iments almost exclusively to binary annotations
(Sheshadri and Lease, 2013).

Contributions

e Our selection of six widely used models
(Dawid and Skene, 1979; Hovy et al., 2013;
Carpenter, 2008) covers models with vary-
ing degrees of complexity: pooled models,
which assume all annotators share the same
ability; unpooled models, which model in-
dividual annotator parameters; and partially
pooled models, which employ a hierarchical
structure to let the level of pooling be dictated
by the data.

e We carry out the evaluation on four datasets
with varying degrees of sparsity and annota-
tor accuracy in both gold-standard dependent
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Figure 1: Plate diagram for multinomial model. The
hyperparameters are left out.
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and independent settings.

e We use fully Bayesian posterior inference to
quantify the uncertainty in parameter esti-
mates.

e We provide guidelines for both model selec-
tion and implementation.

Our findings indicate that models which in-
clude annotator structure generally outperform
other models, though unpooled models can over-
fit. Several open-source implementations of each
model type are available to users.

2 Bayesian Annotation Models

All Bayesian models of annotation we describe are
generative: they provide a mechanism to generate
parameters 6 characterizing the process (annota-
tor accuracies and biases, prevalence, etc.) from
the prior p(#), then generate the observed labels y
from the parameters according to the sampling dis-
tribution p(y|#). Bayesian inference allows us to
condition on some observed data gy to draw infer-
ences about the parameters ¢; this is done through
the posterior, p(f|y). The uncertainty in such in-
ferences may then be used in applications such
as jointly training classifiers (Smyth et al., 1995;
Raykar et al., 2010), comparing crowdsourcing
systems (Lease and Kazai, 2011), or characteriz-
ing corpus accuracy (Passonneau and Carpenter,
2014).

This section describes the six models we eval-
vate. These models are drawn from the litera-
ture, but some had to be generalized from binary
to multiclass annotations. The generalization nat-
urally comes with parameterization changes, al-
though these do not alter the fundamentals of the
models. (One aspect tied to the model parameter-
ization is the choice of priors. The guideline we
followed was to avoid injecting any class prefer-
ences a priori and let the data uncover this infor-
mation; see more in Section 3.)
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Figure 2: Plate diagram of Dawid and Skene model.

2.1 A Pooled Model

Multinomial (MULTINOM) The simplest
Bayesian model of annotation is the bino-
mial model proposed in (Albert and Dodd, 2004)
and discussed in (Carpenter, 2008). This model
pools all annotators (i.e., assumes they have the
same ability; see Figure 1).! The generative
process is:

e Foreveryclass k € {1,2,..., K}:

— Draw class-level abilities
¢ ~ Dirichlet(1%)?

e Draw class prevalence 7 ~ Dirichlet(1%)
e Foreveryitemi € {1,2,...,1}:

— Draw true class ¢; ~ Categorical(7)
— For every position n € {1,2,..., N; }:
+* Draw annotation
Yin ~ Categorical((,)

2.2 Unpooled Models

Dawid and Skene (D&S) The model proposed
by Dawid and Skene (1979) is, to our knowledge,
the first model-based approach to annotation pro-
posed in the literature.? It has found wide applica-
tion (e.g., (Kim and Ghahramani, 2012; Simpson
et al., 2013; Passonneau and Carpenter, 2014)). It
is an unpooled model, i.e., each annotator has their
own response parameters (see Figure 2), which are
given fixed priors. Its generative process is:

e For every annotator j € {1,2,...,J}:

— Forevery class k € {1,2,..., K }:
* Draw class annotator abilities
Bj.x ~ Dirichlet(1%)

! Carpenter (2008) parameterizes ability in terms of speci-
ficity and sensitivity. For multiclass annotations, we gener-
alize to a full response matrix (Passonneau and Carpenter,
2014).

Notation: 1% is a K -dimensional vector of 1 values

*Dawid and Skene fit maximum likelihood estimates us-
ing expectation maximization (EM), but the model is easily
extended to include fixed prior information for regularization,
or hierarchical priors for fitting the prior jointly with the abil-
ity parameters and automatically performing partial pooling.
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Figure 3: Plate diagram for the MACE model.

e Draw class prevalence 7 ~ Dirichlet(1%)
e Foreveryitemi € {1,2,...,I}:

— Draw true class ¢; ~ Categorical(m)
— For every positionn € {1,2,..., N; }:
* Draw annotation
Yim ~ CategoricaI(ﬁjj[i’n]’ci)4

Multi-Annotator Competence Estimation
(MACE) This model, introduced by Hovy et al.
(2013), takes into account the credibility of the
annotators and their spamming preference and
strategy® (see Figure 3). This is another example
of an unpooled model, and possibly the model
most widely applied to linguistic data (e.g.,
(Plank et al., 2014a; Sabou et al., 2014; Habernal
and Gurevych, 2016, inter alia)). Its generative
process is:

e For every annotator j € {1,2,..., J}:

— Draw spamming behavior
¢; ~ Dirichlet(10%)
— Draw credibility 6; ~ Beta(0.5,0.5)

e Foreveryitem: € {1,2,...,1}:

— Draw true class ¢; ~ Uniform
— For every positionn € {1,2,..., N; }:
* Draw a spamming indicator
Sin ~ Bernoulli(1 — ij[i,n})
* If s; , = O then:
cVYin =G
x Else:
- Yin ~ Categorical(€;j; n))

2.3 Partially-Pooled Models

Hierarchical Dawid and Skene (HIERD&S) In
this model, the fixed priors of Dawid and Skene
are replaced with hierarchical priors representing

“*Notation: jj[i,n] gives the index of the annotator who
produced the n-th annotation on item i.
>I.e. propensity to produce labels with malicious intent.
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Figure 4: Plate diagram for the hierarchical Dawid and
Skene model.

the overall population of annotators (see Figure
4). This structure provides partial pooling, using
information about the population to improve es-
timates of individuals by regularizing toward the
population mean. This is particularly helpful with
low count data as found in many crowdsourcing
tasks (Gelman et al., 2013). The full generative
process is as follows:®

e Foreveryclass k € {1,2,..., K}:

— Draw class ability means

Ckkr ~ Normal(0, 1),vk' e {1,..,K}
— Draw class s.d.’s

Q.5 ~ HalfNormal(0, 1), V&’

e For every annotator j € {1,2,..., J}:

— Forevery class k € {1,2,..., K}:

% Draw class annotator abilities
Bjje et ~ Normal(Cp o, Qe ), VA

e Draw class prevalence 7 ~ Dirichlet(1%)
e Foreveryitem: € {1,2,...,1}:

— Draw true class ¢; ~ Categorical(7)
— For every position n € {1,2,..., N; }:
* Draw  annotation  y; ~
Categorical(softmax(;{; n].c;))’

Item Difficulty (ITEMDIFF) We also test an exten-
sion of the “Beta-Binomial by Item” model from
(Carpenter, 2008), which does not assume any an-
notator structure; instead, the annotations of an
item are made to depend on its intrinsic difficulty.
The model further assumes that item difficulties
are instances of class-level hierarchical difficul-
ties (see Figure 5). This is another example of a
partially-pooled model. Its generative process is
presented below:

e Foreveryclass k € {1,2,..., K}:

®A two-class version of this model can be found in (Car-
penter, 2008) under the name “Beta-Binomial by Annotator”.
"The argument of the softmax is a & -dimensional vector
of annotator abilities given the true class, i.e., B;j[i,n],c; =

(ﬁjj[i,n],ci,h (LX) /Bjj[i,n],ci,K)
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Figure 5: Plate diagram for item difficulty model.

— Draw class difficulty means:

N ~ Normal(0,1), V&' € {1, ..., K}
— Draw class s.d.’s

Xk:,k’ ~ HaIfNormaI(O, 1),Vk/

e Draw class prevalence 7 ~ Dirichlet(1%)
e Foreveryitem: € {1,2,...,1}:

— Draw true class ¢; ~ Categorical(7)
— Draw item difficulty 6, ~
Normal(ne, k> Xe; 1), VE
— For every positionn € {1,2,..., N; }:
* Draw annotation:
yin ~ Categorical(softmax(;))

Logistic Random Effects (LOGRNDEFF) The
last model is the Logistic Random Effects model
(Carpenter, 2008), which assumes the annotations
depend on both annotator abilities and item dif-
ficulties (see Figure 6). Both annotator and item
parameters are drawn from hierarchical priors for
partial pooling. Its generative process is given be-
low:

e Foreveryclass k € {1,2,..., K}:

— Draw class ability means

Ck,k’ ~ NormaI(O, 1),Vk)/ S {1, ey K}
— Draw class ability s.d.’s

Q1 ~ HalfNormal(0, 1), V&’

— Draw class difficulty s.d.’s
X i ~ HalfNormal(0, 1), V&'

e For every annotator j € {1,2,...,J}:

- Forevery class k € {1,2,..., K }:
* Draw class annotator abilities
5j,lc,k’ ~ Normal((k’k/,ﬂhkr),Vk'

e Draw class prevalence 7 ~ Dirichlet(1%)
e Foreveryitem: € {1,2,...,1}:

— Draw true class ¢; ~ Categorical(7)
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Figure 6: Plate diagram for logistic random effects
model.

— Draw item difficulty:
0; r, ~ Normal(0, X, 1), Vk
— For every position n € {1,2,..., N; }:
* Draw  annotation  y; ~
Categorical(softmax (i n).c,

0:))

3 Implementation of the Models

We implemented all models in this paper in Stan
(Carpenter et al., 2017), a tool for Bayesian In-
ference based on Hamiltonian Monte Carlo. Al-
though the non-hierarchical models we present
can be fit with (penalized) maximum likelihood
(Dawid and Skene, 1979; Passonneau and Car-
penter, 2014),8 there are several advantages to a
Bayesian approach. First and foremost, it pro-
vides a mean for measuring predictive calibra-
tion for forecasting future results. For a well-
specified model that matches the generative pro-
cess, Bayesian inference provides optimally cali-
brated inferences (Bernardo and Smith, 2001); for
only roughly accurate models, calibration may be
measured for model comparison (Gneiting et al.,
2007). Calibrated inference is critical for mak-
ing optimal decisions, as well as for forecast-
ing (Berger, 2013). A second major benefit of
Bayesian inference is its flexibility in combining
submodels in a computationally tractable manner.
For example, predictors or features might be avail-
able to allow the simple categorical prevalence
model to be replaced with a multi-logistic regres-
sion (Raykar et al., 2010), features of the anno-
tators may be used to convert that to a regres-

8Hierarchical models are challenging to fit with classical
methods; the standard approach, maximum marginal likeli-
hood, requires marginalizing the hierarchical parameters, fit-
ting those with an optimizer, then plugging the hierarchical
parameter estimates in and repeating the process on the co-
efficients (Efron, 2012). This marginalization requires either
a custom approximation per model in terms of either quadra-
ture or MCMC to compute the nested integral required for
the marginal distribution that must be optimized first (Mar-
tins et al., 2013).



sion model, or semi-supervised training might be
carried out by adding known gold-standard labels
(Van Pelt and Sorokin, 2012). Each model can
be implemented straightforwardly and fit exactly
(up to some degree of arithmetic precision) using
Markov chain Monte Carlo (MCMC) methods, al-
lowing a wide range of models to be evaluated.
This is largely because posteriors are much bet-
ter behaved than point estimates for hierarchical
models, which require custom solutions on a per-
model basis for fitting with classical approaches
(Rabe-Hesketh and Skrondal, 2008). Both of these
benefits make Bayesian inference much simpler
and more useful than classical point estimates and
standard errors.

Convergence is assessed in a standard fashion
using the approach proposed by Gelman and Ru-
bin (1992): for each model we run four chains
with diffuse initializations and verify that they
converge to the same mean and variances (using
the criterion R < 1.1).

Hierarchical priors, when jointly fit with the rest
of the parameters, will be as strong and thus sup-
port as much pooling as evidenced by the data. For
fixed priors on simplexes (probability parameters
that must be non-negative and sum to 1.0), we use
uniform distributions (i.e., Dirichlet(1%)). For lo-
cation and scale parameters, we use weakly infor-
mative normal and half-normal priors that inform
the scale of the results, but are not otherwise sen-
sitive. As with all priors, they trade some bias for
variance and stabilize inferences when there is not
much data. The exception is MACE, for which we
used the originally recommended priors, to con-
form with the authors’ motivation.

All model implementations are available
to readers online at http://dali.eecs.
gmul.ac.uk/papers/supplementary_
material.zip.

4 Evaluation

The models of annotation discussed in this paper
find their application in multiple tasks: to label
items, characterize the annotators, or flag espe-
cially difficult items. This section lays out the met-
rics used in the evaluation of each of these tasks.

4.1 Datasets

We evaluate on a collection of datasets reflect-
ing a variety of use-cases and conditions: binary
vs. multi-class classification; small vs. large

Dataset 1 N J K 1 N
101010 172020
WSD 177 1770 34 3 101010 5277 177
101010 202020
RTE 800 8000 164 2 101010 49 20 800
101010 101016
TEMP 462 4620 76 2 101010 6150462
157 1413147
PD 5892 43161 294 4 7957 513395

Table 1: General statistics (I items, /N observations, J
annotators, K classes) together with summary statis-
tics for the number of annotators per item (J/I) and
the number of items per annotator (I /J) (i.e., Min, st
Quartile, Median, Mean, 3rd Quartile, and Max)

number of annotators; sparse vs. abundant num-
ber of items per annotator / annotators per item;
and varying degrees of annotator quality (statis-
tics presented in Table 1). Three of the datasets
— WSD, RTE and TEMP, created by Snow et al.
(2008) — are widely used in the literature on an-
notation models (Hovy et al., 2013; Carpenter,
2008). In addition, we include the Phrase Detec-
tives 1.0 (PD) corpus (Chamberlain et al., 2016)
which differs in a number of key ways from the
Snow et al. (2008) datasets: it has a much larger
number of items and annotations, greater sparsity,
and a much greater likelihood of spamming due to
its collection via a Game-With-A-Purpose. This
dataset is also less artificial than the datasets in
Snow et al. (2008), which were created with the
express purpose of testing crowd-sourcing. The
data consists of anaphoric annotations, which we
reduce to four general classes (DN/DO - discourse
new/old, PR - property, and NR - non-referring).
To ensure similarity with the Snow et al. (2008)
datasets, we also limit the coders to one annotation
per item (discarded data was mostly redundant an-
notations). Furthermore, this corpus allows us to
evaluate on meta-data not usually available in tra-
ditional crowdsourcing platforms, namely infor-
mation about confessed spammers and good, es-
tablished players.

4.2 Comparison Against a Gold Standard

The first model aspect we assess is how accu-
rately they identify the correct (“true”) label of
the items. The simplest way to do this is by
comparing the inferred labels against a gold stan-
dard, using standard metrics such as Precision /
Recall / F-measure, as done, e.g., for the evalua-
tion of MACE in (Hovy et al., 2013). We check
whether the reported differences are statistically
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significant, using bootstrapping (the shift method),
a non-parametric two-sided test (Smucker et al.,
2007; Wilbur, 1994). We use a significance thresh-
old of 0.05 and further report whether the signifi-
cance still holds after applying the Bonferroni cor-
rection for type-1 errors.

This type of evaluation, however, presupposes
that a gold standard can be obtained. This as-
sumption has been questioned by studies show-
ing the extent of disagreement on annotation even
among experts (Poesio and Artstein, 2005; Pas-
sonneau and Carpenter, 2014; Plank et al., 2014b).
This motivates exploring complementary evalua-
tion methods.

4.3 Predictive Accuracy

In the statistical analysis literature, posterior pre-
dictions are a standard assessment method for
Bayesian models (Gelman et al., 2013). We mea-
sure the predictive performance of each model us-
ing the log predictive density (Ipd), i.e., log p(9|y),
in a Bayesian K-fold cross-validation setting (Pi-
ironen and Vehtari, 2017; Vehtari et al., 2017). The
set-up is straightforward: we partition the data into
K subsets, each subset formed by splitting the an-
notations of each annotator into K random folds
(we choose K = 5). The splitting strategy ensures
that models that cannot handle predictions for new
annotators (i.e., unpooled models like D&S and
MACE) are nevertheless included in the compari-
son. Concretely, we compute

K

Ipd = " 1og p(iik|y(—r))
k=1

K
Z log

—

(T Oy(—))dO (1)

B
Il
—

(G| 0™

2
?Mx
M:

m:

In (1), y(_x) and yj, represent the items from the
train and test data, for iteration k of the cross vali-
dation, while %™ is one draw from the posterior.

4.4 Annotators’ Characterization

A key property of most of these models is that
they provide a characterization of coder ability.
In the D&S model, for instance, each annota-
tor 1s modeled with a confusion matrix; Passon-
neau and Carpenter (2014) showed how different
types of annotators (biased, spamming, adversar-
ial) can be identified by examining this matrix.

The same information is available in HIERD &S
and LOGRNDEFF, whereas MACE characterizes
coders by their level of credibility and spamming
preference. We discuss these parameters with the
help of the meta-data provided by the PD corpus.
Some of the models (e.g., MULTINOM or
ITEMDIFF) do not explicitly model annotators.
However, an estimate of annotator accuracy can
be derived post-inference for all the models. Con-
cretely, we define the accuracy of an annotator as
the proportion of their annotations that match the
inferred item-classes. This follows the calculation
of gold-annotator accuracy (Hovy et al., 2013),
computed with respect to the gold standard. Simi-
lar to Hovy et al. (2013), we report the correlation
between estimated and gold annotators’ accuracy.

4.5 Item Difficulty

Finally, the LOGRNDEFF model also provides an
estimate which can be used to assess item diffi-
culty. This parameter has an effect on the correct-
ness of the annotators, i.e., there is a subtractive
relationship between the ability of an annotator
and the item-difficulty parameter. The ‘difficulty’
name is thus appropriate, although an examination
of this parameter alone does not explicitly mark
an item as difficult or easy. The ITEMDIFF model
does not model annotators and only uses the diffi-
culty parameter, but the name is slightly mislead-
ing, since its probabilistic role changes in the ab-
sence of the other parameter (i.e., it now shows the
most likely annotation classes for an item). These
observations motivate an independent measure of
item difficulty, but there is no agreement on what
such a measure could be.

One approach is to relate the difficulty of an
item to the confidence a model has in assigning
it a label. This way, the difficulty of the items is
judged under the subjectivity of the models, which
in turn, is influenced by their set of assumptions
and data fitness. As in (Hovy et al., 2013), we
measure the model’s confidence via entropy, to fil-
ter out the items the models are least confident in
(i.e. the more difficult ones) and report accuracy
trends.

5 Results

This Section assesses the six models along dif-
ferent dimensions. The results are compared
with those obtained with a simple majority vote
(MAJVOTE) baseline. We do not compare the



Model Result  Statistical Significance

D&S* HIERD&S*
LOGRNDEFF* MACE*

MULTINOM 0.89

ITEMDIFF* MATVOTE

D&S 0.92 MULTINOM*

ITEMDIFF* MAJTVOTE*

HIERD &S 0.93 MULTINOM*

LoGRNDEFF* MACE*

ITEMDIFF 0.89 D&S* HIERD&S*

MAJVOTE* MULTINOM*

LOGRNDEFF 093 |-+ '

MAIJVOTE* MULTINOM*

MACE 0.93 ITEMDIFE*

D&S HIERD&S*

Magvote 090 | RNDEFF* MACE*

Table 2: RTE dataset: results against the gold standard.
Both micro (accuracy) and macro (P, R, F) scores are
the same. * indicates that significance (0.05 threshold)
holds after applying the Bonferroni correction.

results with non-probabilistic baselines as it has
already been shown-see, e.g., Quoc Viet Hung
et al. (2013)—that they underperform compared to
a model of annotation.

We follow the evaluation tasks and metrics dis-
cussed back in Section 4 and briefly summarized
next. A core task for which models of annota-
tion are employed is to infer the correct interpreta-
tions from a crowdsourced dataset of annotations.
This evaluation is conducted first and consists of
a comparison against a gold standard. A problem
with this assessment is caused by ambiguity, pre-
vious studies indicating disagreement even among
experts. Considering obtaining a true gold stan-
dard is questionable, we further explore a comple-
mentary evaluation, assessing the predictive per-
formance of the models, a standard evaluation ap-
proach from the literature on Bayesian models.
Another core task models of annotation are used
for is to characterize the accuracy of the annotators
and their error patterns. This is the third objective
of this evaluation. Finally, we conclude this Sec-
tion assessing the ability of the models to correctly
diagnose the items for which potentially incorrect
labels have been inferred.

The PD data are too sparse to fit the models
with item-level difficulties (i.e., ITEMDIFF and
LOGRNDEFF). These models are therefore not
present in the evaluations conducted on the PD
corpus.

5.1 Comparison Against a Gold Standard

A core task models of annotation are used for is
to infer the correct interpretations from crowd-
annotated datasets. This Section compares the in-
ferred interpretations with a gold standard.

Tables 2, 3 and 4 present the results.” On
WSD and TEMP datasets (see Table 4), charac-
terized by a small number of items and annotators
(statistics in Table 1), the different model com-
plexities result in no gains, all the models per-
forming equivalently. Statistically significant dif-
ferences (0.05 threshold, plus Bonferroni correc-
tion for Type-1 errors; see Section 4.2 for details)
are, however, very much present in Tables 2 (RTE
dataset) and 3 (PD dataset). Here the results are
dominated by the unpooled (D&S and MACE)
and partially-pooled models (LOGRNDEFF, and
HIERD &S, except for PD, as discussed later in
Section 6.1) which assume some form of annota-
tor structure. Furthermore, modeling the full an-
notator response matrix leads in general to bet-
ter results (e.g., D&S vs. MACE on the PD
dataset). Ignoring completely any annotator struc-
ture is rarely appropriate, such models failing to
capture the different levels of expertise the coders
have — see the poor performance of the unpooled
MULTINOM model and of the partially-pooled
ITEMDIFF model. Similarly, the MAJVOTE base-
line, implicitly assumes equal expertise among
coders, leading to poor performance results.

5.2 Predictive Accuracy

Ambiguity causes disagreement even among ex-
perts, affecting the reliability of existing gold stan-
dards. This Section presents a complementary
evaluation, i.e., predictive accuracy. In a simi-
lar spirit to the results obtained in the compari-
son against the gold standard, modeling the abil-
ity of the annotators was also found essential for
a good predictive performance (results presented
in Table 5). However, in this type of evaluation,
the unpooled models can overfit, affecting their
performance, e.g., a model of higher complex-
ity like D&S, on a small dataset like WSD. The
partially pooled models avoid overfitting through
the hierarchical structure obtaining the best pre-
dictive accuracy. Ignoring the annotator structure

°The results for MAIVOTE, HIERD &S and LOGRNDEFF
we report match or slightly outperform those reported by
(Carpenter, 2008) on the RTE dataset. Similar for MACE,
across WSD, RTE and TEMP datasets (Hovy et al., 2013).



Accuracy (micro)

F-measure (macro)

Model Result  Statistical Significance Result  Statistical Significance

MULTINOM  0.87 D&S* HIERD&S* MACE* MAJVOTE 0.79 D&S* HIERD&S* MACE* MAJVOTE*

D&S 0.94 HIERD&S* MACE* MAJVOTE* MULTINOM* (.87 HIERD&S* MACE* MAJVOTE* MULTINOM*

HIERD&S 0.89 MACE* MAJVOTE* MULTINOM* D&S* 0.82 MAJVOTE* MULTINOM* D&S*

MACE 0.93 MAJVOTE* MULTINOM* D&S* HIERD & S* 0.83 MAJVOTE* MULTINOM* D&S*

MAJVOTE 0.88 MULTINOM D&S* HIERD&S* MACE* 0.73 MULTINOM* D&S* HIERD&S* MACE*
Precision (macro) Recall (macro)

Model Result  Statistical Significance Result  Statistical Significance

MuLtinoM  0.73 D&S* HIERD&S* MACE* MAJVOTE* 0.85 HIERD&S* MAJVOTE*

D&S 0.88 HIERD&S* MACE* MULTINOM* 0.87 HIERD&S MACE MAJVOTE*

HIERD&S 0.76 MACE* MAJVOTE* MULTINOM* D&S* 0.89 MACE* MAJVOTE* MULTINOM* D&S

MACE 0.83 MAJVOTE MULTINOM* D&S* HIERD&S* 0.84 MAJVOTE* D&S HIERD&S*

MAJVOTE 0.87 MuLTINOM* HIERD&S* MACE 0.63 MuLTINOM* D&S* HIERD&S* MACE*

Table 3: PD dataset: results against the gold standard. * indicates that significance holds after Bonferroni correc-

tion.

Dataset Model Acc, Pu  Rm  Fu
ITEMDIFF

WSD LOGRNDEFF 0.99 0.83 099 091
Others 0.99 0.89 1.00 094

TEMP MAJVOTE 0.94 093 094 094
Others 0.94 094 094 094

Table 4: Results against the gold (¢ micro; M macro)

(ITEMDIFF and MULTINOM) leads to poor per-
formance on all datasets except for WSD where
this assumption is roughly apppropriate since all
the annotators have a very high proficiency (above
95%).

5.3 Annotators’ Characterization

Another core task models of annotation are em-
ployed for is to characterize the accuracy and bias
of the annotators.

We first assess the correlation between the es-
timated and gold accuracy of the annotators. The
results, presented in Table 6, follow the same pat-
tern to those obtained in Section 5.1: a better per-
formance of the unpooled (D&S and MACE!?)
and partially-pooled models (LOGRNDEFF and
HIERD &S, except for PD, as discussed later in
Section 6.1). The results are intuitive: a model
that is accurate w.r.t. the gold standard should also
obtain high correlation at annotator level.

The PD corpus comes also with a list of self-
confessed spammers and one of good, established
players (see Table 7 for a few details). Contin-
uing with the correlation analysis, an inspection

'9The results of our reimplementation match the published
ones (Hovy et al., 2013)

Model WSD RTE TEMP PD*
MULTINOM -0.75 -593 -5.84 -4.67
D&S -1.19  -498 -2.61 -2.99
HIERD &S -0.63 471 -2.62 -3.02
ITEMDIFF -0.75 -597 -5.84 -
LOGRNDEFF -0.59 -479 -2.63 -
MACE -0.70 -4.86 -2.65 -3.52

Table 5: The log predictive density results, normalized
to a per-item rate (i.e., Ipd/I). Larger values indicate
a better predictive performance. PD* is a subset of PD
such that each annotator has a number of annotations at
least as big as the number of folds.

of the second-last column from Table 6 shows
largely accurate results for the list of spammers.
However, on the second category, i.e., the non-
spammers (the last column), we see large differ-
ences between models, following the same pattern
with the previous correlation results. An inspec-
tion of the spammers’ annotations show an almost
exclusive use of the DN (discourse new) class,
which is highly prevalent in PD and easy for the
models to infer; the non-spammers, on the other
hand, make use of all the classes, making it more
difficult to capture their behavior.!!

We further examine some useful parameter es-
timates for each player type. We chose one spam-
mer and one non-spammer and discuss the con-
fusion matrix inferred by D&S, together with
the credibility and spamming preference given by
MACE. The two annotators were chosen to be

"In a typical coreference corpus over 60% of mentions
are DN thus always choosing DN results in a good accuracy
level. The one-class preference is a common spamming be-
havior (Hovy et al., 2013; Passonneau and Carpenter, 2014).



Model WSD RTE TEMP PD ‘ S NS

MAJVOTE 0.90 0.78 091 0.77 0.98 0.65
line MULTINOM 0.90 0.84 0.93 0.75 0.97 0.84
D&S 0.90 0.89 0.92 0.88 1.00 0.99
HIERD &S 0.90 0.90 0.92 0.76 1.00 091
ITEMDIFF 0.80 0.84 0.93 - - -

LOGRNDEFF 0.80 0.89 0.92 - - -

MACE 0.90 0.90 0.92 0.86 1.00 0.98

Table 6: Correlation between gold and estimated accu-
racy of annotators. The last two columns refer to the
list of known spammers and non-spammers in PD

Type Size  Gold accuracy quantiles
Spammers 7 0.420.550.74
Non-spammers 19 0.59 0.89 0.94

Table 7: Statistics on player types. Reported quantiles
are 2.5%, 50% and 97.5%.

representative for their type. The selection of
the models was guided by their two different ap-
proaches to capturing the behavior of the annota-
tors.

Table 8 presents the estimates for the annotator
selected from the list of spammers. Again, inspec-
tion of the confusion matrix shows that, irrespec-
tive of the true class, the spammer almost always
produces the DN label. The MACE estimates are
similar, allocating O credibility to this annotator,
and full spamming preference for the DN class.

In Table 9 we show the estimates for the anno-
tator chosen from the non-spammers list. Their
response matrix indicates an overall good perfor-
mance (see diagonal matrix), albeit with a con-
fusion of PR (property) for DN (discourse new),
which is not surprising given that indefinite NPs
(e.g., a policeman) are the most common type of
mention in both classes. MACE allocates large
credibility to this annotator and shows a similar
spamming preference for the DN class.

The discussion above, as well as the quantiles
from Table 7, show that poor accuracy is not by
itself a good indicator of spamming. A spam-
mer like the one discussed in this section can get
good performance by always choosing a class with
high frequency in the gold standard. At the same
time, a non-spammer may fail to recognize some
true classes correctly, but be very good on oth-
ers. Bayesian models of annotation allow captur-
ing and exploiting these observations. For a model
like D&S, such a spammer presents no harm, as
their contribution towards any potential true class
of the item is the same and therefore cancels out.'?

12Point also made by Passonneau and Carpenter (2014).

B8 NR DN PR DO

bgg NR 003 092 003 003
DN 000 1.00 000 0.00
PR 001 098 001 001
DO 000 1.00 0.00 0.00
acs NR DN PR DO
0.00 099 0.0 0.00

0;  0.00

Table 8: Spammer analysis example: D&S provides a
confusion matrix; MACE shows the spamming prefer-
ence and the credibility.

Bj NR DN PR DO

bgs NR 079 007 007 007
DN 000 096 001 0.02
PR 003 021 072 004
DO 000 0.06 000 094
N NR DN PR DO
009 052 017 022

6, 092

Table 9: A non-spammer analysis example: D&S pro-
vides a confusion matrix; MACE shows the spamming
preference and the credibility.

5.4 Filtering using Model Confidence

This Section assesses the ability of the models to
correctly diagnose the items for which potentially
incorrect labels have been inferred. Concretely,
we identify the items the models are least confi-
dent in (measured using the entropy of the poste-
rior of the true class distribution) and present the
accuracy trends as we vary the proportion of fil-
tered out items.

Overall, the trends — Figures 7, 8 and 9 — in-
dicate that filtering out the items with low confi-
dence improves the accuracy of all the models and
across all datasets.!?

6 Discussion

We found significant differences across a number
of dimensions between both the annotation models
and between the models and MAJTVOTE.

3The trends for MACE match the published ones. Also,
we left out the analysis on the WSD dataset, as the models al-
ready obtain 99% accuracy without any filtering (see Section
5.1).
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Figure 8: TEMP dataset - accuracy (y-axis) vs. propor-
tion of data with lowest entropy (x-axis)

6.1 Observations and Guidelines

The completely pooled model (MULTINOM) un-
derperforms in almost all types of evaluation and
all datasets. Its weakness derives from its core as-
sumption: it is rarely appropriate in crowdsourc-
ing to assume that all annotators have the same
ability.

The unpooled models (D&S and MACE) as-
sume each annotator has their own response pa-
rameter. These models can capture the accuracy
and bias of annotators, and perform well in all
evaluations against the gold standard. Lower per-
formance is however obtained on posterior predic-
tions: the higher complexity of unpooled models
results in overfitting, which affects their predictive
performance.

The partially pooled models (ITEMDIFF,
HIERD&S and LOGRNDEFF) assume both
individual and hierarchical structure (capturing
population behaviour). These models achieve the
best of both worlds, letting the data determine the
level of pooling that is required: they asymptote
to the unpooled models if there is a lot of variance
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Figure 9: PD dataset - accuracy (y-axis) vs. proportion
of data with lowest entropy (x-axis)

among the individuals in the population, or to the
fully pooled models when the variance is very
low. This flexibility ensures good performance
both in the evaluations against the gold standard
and in terms of their predictive performance.

Across the different types of pooling, the mod-
els which assume some form of annotator structure
(D&S, MACE, LOGRNDEFF and HIERD&S)
came out on top in all evaluations. The un-
pooled models (D&S and MACE) register on
par performance with the partially-pooled ones
(LOGRNDEFF and HIERD &S, except for the PD
dataset, as discussed later in this Section) in the
evaluations against the gold, but as previously
mentioned, can overfit, affecting their predic-
tive performance. Ignoring any annotator struc-
ture (the pooled MULTINOM model, the partially-
pooled ITEMDIFF model, or the MATVOTE base-
line) leads generally to poor performance results.

The approach we took in this paper is domain
independent, i.e., we did not assess and compare
models that use features extracted from the data,
even though it is known that when such features
are available, they are likely to help (Raykar et al.,
2010; Felt et al., 2015a; Kamar et al., 2015). This
is because a proper assessment of such models
would also require a careful selection of the fea-
tures and how to include them into a model of an-
notation. A bad (i.e., misspecified in the statistical
sense) domain model is going to hurt more than
help as it will bias the other estimates. Providing
guidelines for this feature-based analysis would
have excessively expanded the scope of this pa-
per. But feature-based models of annotation are
extensions of the standard annotation-only mod-
els; thus, this paper can serve as a foundation for
the development of such models. A few examples



of feature-based extensions of standard models of
annotation are given in the Related Work section
to guide readers who may want to try them out for
their specific task/domain.

The domain-independent approach we took in
this paper further implies there are no differences
between applying these models to corpus anno-
tation or other crowdsourcing tasks. This paper
is focused on resource creation and does not pro-
pose to investigate the performance of the mod-
els in downstream tasks. However, previous work
already employed such models of annotation for
NLP (Plank et al., 2014a; Sabou et al., 2014;
Habernal and Gurevych, 2016), image labeling
(Smyth et al., 1995; Kamar et al., 2015) or med-
ical (Albert and Dodd, 2004; Raykar et al., 2010)
tasks.

While HIERD&S normally achieves the best
performance in all evaluations on the Snow et al.
(2008) datasets, on the PD data it is outperformed
by the unpooled models (MACE and D&S). To
understand this discrepancy, it should be noted
that the datasets from Snow et al. (2008) were pro-
duced using Amazon Mechanical Turk, by mainly
highly skilled annotators; whereas the PD dataset
was produced in a game-with-a-purpose setting,
where most of the annotations were made by only
a handful of coders of high quality, the rest be-
ing produced by a large number of annotators with
much lower abilities. These observations point
to a single population of annotators in the for-
mer datasets, and to two groups in the latter case.
The reason why the unpooled models (MACE and
D&S) outperform the partially-pooled HIERD &S
model on the PD data is that this class of models
assumes no population structure — hence there is
no hierarchical influence; a multi-modal hierarchi-
cal prior in HIERD&S might be better suited for
the PD data. This further suggests that results de-
pend to some extent on the dataset specifics. This
does not alter the general guidelines made in this
study.

6.2 Technical Notes

Posterior curvature. In hierarchical models, a
complicated posterior curvature increases the dif-
ficulty of the sampling process affecting conver-
gence. This may happen when the data is sparse
or when there are large inter-group variances. One
way to overcome this problem is to use a non-
centered parameterization (Betancourt and Giro-
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lami, 2015). This approach separates the local
parameters from their parents, easing the sam-
pling process. This often improves the effective
sample size and, ultimately, the convergence (i.e.,
lower R). The non-centered parameterization of-
fers an alternative but equivalent implementation
of a model. We found this essential to ensure a ro-
bust implementation of the partially-pooled mod-
els.

Label Switching. The label switching problem that
occurs in mixture models is due to the likelihood’s
invariance under the permutation of the labels.
This makes the models nonidentifiable. Conver-
gence cannot be directly assessed, since the chains
will not overlap anymore. We use a general solu-
tion to this problem from Gelman et al. (2013):
re-label the parameters, post-inference, based on
a permutation that minimizes some loss function.
For this survey, we used a small random sample of
the gold data (e.g., five items per class) to find the
permutation which maximizes model accuracy for
every chain-fit. We then relabeled the parameters
of each chain according to the chain-specific per-
mutation before combining them for convergence
assessment. This ensures model identifiability and
gold alignment.

7 Related Work

Bayesian models of annotation share many char-
acteristics with so called item-response and ideal-
point models. A popular application of these mod-
els is to analyze data associated with individuals
and test items. A classic example is the Rasch
model (Rasch, 1993) which assumes that the prob-
ability of a person being correct on a test item is
based on a subtractive relationship between their
ability and the difficulty of the item. The model
takes a supervised approach to jointly estimating
the ability of the individuals and the difficulty of
the test items based on the correctness of their re-
sponses. The models of annotation we discussed
in this paper are completely unsupervised and in-
fer, in addition to annotator ability and/or item dif-
ficulty, the correct labels. More details on item-
response models are given in (Skrondal and Rabe-
Hesketh, 2004; Gelman and Hill, 2007). Item-
response theory has also been recently applied to
NLP applications (Lalor et al., 2016; Martinez-
Plumed et al., 2016; Lalor et al., 2017).

The models considered so far take into account
only the annotations. There is work, however,



which further exploits the features that can accom-
pany items. A popular example is the model intro-
duced by Raykar et al. (2010), where the true class
of an item is made to depend both on the annota-
tions and on a logistic regression model which are
jointly fit; essentially, the logistic regression re-
places the simple categorical model of prevalence.
Felt et al. (2014, 2015b) introduced similar mod-
els which also modeled the predictors (features)
and compared it to other approaches (Felt et al.,
2015a). Kamar et al. (2015) account for task-
specific feature effects on the annotations.

In Section 6.2, we discussed the label switch-
ing problem (Stephens, 2000) that many mod-
els of annotation suffer from. Other solutions
proposed in the literature include utilizing class-
informative priors, imposing ordering constraints
(obvious for univariate parameters; less so in mul-
tivariate cases) (Gelman et al., 2013), or apply-
ing different post-inference relabeling techniques
(Felt et al., 2014).

8 Conclusions

This study aims to promote the use of Bayesian
models of annotation by the NLP community.
These models offer substantial advantages over
both agreement statistics (used to judge coding
standards), and over majority-voting aggregation
to generate gold standards (even when used with
heuristic censoring or adjudication). To provide
assistance in this direction, we compare six
existing models of annotation with distinct prior
and likelihood structures (e.g., pooled, unpooled,
and partially pooled) and a diverse set of effects
(annotator ability, item difficulty, or a subtractive
relationship between the two). We use various
evaluation settings on four datasets, with different
levels of sparsity and annotator accuracy, and
report significant differences both among the
models, and between models and majority voting.
As importantly, we provide guidelines to both
aid users in the selection of the models and to
raise awareness of the technical aspects essential
to their implementation. We release all models
evaluated here as Stan implementations at http:
//dali.eecs.qgmul.ac.uk/papers/
supplementary_material.zip.
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